Se p 20 06 Efficiency of a class of unbiased estimators for the invariant distribution function of a diffusion process ∗
نویسنده
چکیده
We consider the problem of the estimation of the invariant distribution function of an ergodic diffusion process when the drift coefficient is unknown. The empirical distribution function is a natural estimator which is unbiased, uniformly consistent and efficient in different metrics. Here we study the properties of optimality for an other kind of estimator recently proposed. We consider a class of unbiased estimators and we show that they are also efficient in the sense that their asymptotic risk, defined as the integrated mean square error, attains an asymptotic minimax lower bound.
منابع مشابه
Classic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data
Introduction In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice, the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...
متن کاملTruncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space
Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...
متن کاملShrinkage Preliminary Test Estimation under a Precautionary Loss Function with Applications on Records and Censored Ddata
Shrinkage preliminary test estimation in exponential distribution under a precautionary loss function is considered. The minimum risk-unbiased estimator is derived and some shrinkage preliminary test estimators are proposed. We apply our results on censored data and records. The relative efficiencies of proposed estimators with respect to the minimum ‎risk-unbiased‎&...
متن کاملEstimating a Bounded Normal Mean Under the LINEX Loss Function
Let X be a random variable from a normal distribution with unknown mean θ and known variance σ2. In many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. As the usual estimator of θ, i.e., X under the LINEX loss function is inadmissible, finding some competitors for X becomes worthwhile. The only study in the literature considered the problem of min...
متن کاملMixed Estimators of Ordered Scale Parameters of Two Gamma Distributions with Arbitrary Known Shape Parameters
When an ordering among parameters is known in advance,the problem of estimating the smallest or the largest parametersarises in various practical problems. Suppose independent randomsamples of size ni drawn from two gamma distributions withknown arbitrary shape parameter no_i > 0 and unknown scale parameter beta_i > 0, i = 1, 2. We consider the class of mixed estimators of 1 and 2 under the res...
متن کامل